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Abstract: Effective reasoning often requires going beyond pattern matching or memorization of solutions to identify
and implement “algorithmic procedures” that can be used to deduce answers to hard problems. These algorithmic
procedures consist of reusable primitives, intermediate results, or procedures that themselves can be applied across
many problems. While current methods of RL post-training on long chains of thought ultimately desire to uncover
this kind of algorithmic behavior, their sensitivity to benchmarks and the brittle and locally optimal nature of
strategies learned by these systems suggest that this is far from a fulfilled promise. To instantiate this, we introduce
abstractions: concise natural language descriptions of procedural and factual knowledge that guide the model
toward successful reasoning strategies. We train models to be capable of proposing several useful abstractions
given a problem, followed by RL training that incentivizes building a solution while using the information provided
by these abstractions. This results in a two-agent cooperative RL training paradigm, RL For Abstraction Discovery
(RLAD), that jointly trains an abstraction generator and an abstraction-conditioned solution generator. This bi-level
setup effectively enables structured exploration, decouples learning signals pertaining to abstraction proposal and
solution generation, and improves generalization to harder problems, analogous to what we would expect from
hierarchical RL. Empirically, RLAD improves performance on challenging math benchmarks.

The purpose of abstraction is not to be vague,
but to create a new semantic level in which one can be absolutely precise.

— Edsger W. Dijkstra

1. Introduction
Modern machinery for solving reasoning tasks with large language models (LLMs) relies on incentivizing
the use of longer chains of thought via reinforcement learning (RL). This training approach largely
incentivizes “depth”: subsequent training iterations increase response length by incorporating new
operations that usually verify or build upon the existing line of reasoning [37]. In many hard problems, it
is instead more desirable to optimize for “breadth”: explore a diverse array of solution strategies, rather
than committing to a seemingly optimal set of reasoning strategies right away [51, 53]. Optimizing for
breadth is important: even when models optimized for depth succeed on some problems, they fail on
structurally similar ones that require slightly different strategies, revealing brittle reasoning and poor
generalization [39, 20, 25, 16, 29].

How can we help models discover a breadth of reasoning strategies for a given problem? Abstractly, the
most natural approach is to train models to hypothesize new solutions to difficult problems and then
attempt to utilize these strategies in the solution. We can do this by making models capable of discovering
reasoning abstractions: compressed representations of shared procedures that underlie multiple candi-
date solutions. For example, in math reasoning problems, such abstractions might correspond to useful
intermediate lemmas or even some intermediate steps that do not succeed but illustrate what not to do.
When presented in context, these abstractions function like hints on an exam, enabling LLMs to solve
harder problems by building on the insights appearing in the abstraction, rather than from scratch. That

Corresponding author(s): anikait@stanford.edu, yuxiaoq@andrew.cmu.edu, yoonho@cs.stanford.edu
Project Website: https://rl-abstraction-discovery.github.io/

https://rl-abstraction-discovery.github.io/


Learning to Discover Abstractions for LLM Reasoning

Query

Model-Generated

Abstraction

Intermediate Step Correct Incorrect

Query



Determine the smallest positive 
prime p which satisfies the 
congruence p + p⁻¹ ≡ 25 mod 
143.

Abstraction 1 (Blind-Follow)



Use the quadratic formula in 
modular arithmetic: for aX² + bX 
+ c ≡ 0 (mod m), compute the 
discriminant D = b² – 4ac, then X 
≡ [–b ± √D]·(2a)⁻¹ (mod m)...

Abstraction 2 (Launchpoint)



Transform any equation a + a⁻¹ ≡ 
c into a quadratic form by setting 
x = a⁻¹. This yields x + a·x = c, i.e. 
x(a + 1) = c. It turns an inverse-
based problem into a standard...

Abstraction 3 (Caution Alert)



Check the existence of a 
multiplicative inverse before 
using X⁻¹ in a congruence. A 
number X has an inverse mod m 
precisely when gcd(X, m) = 1...

Figure 1: Reasoning abstractions illustrated in the solution-space graph for a problem. We represent the problem as
a node (labeled “query”) and various traces (both correct and incorrect) attempting to solve the problem as a graph. In this
illustration, reasoning abstractions describe useful high-level structure in this space of all traces, such as (1) an abstract idea
that can induce a predictable sequence of successful states (blind follow), (2) an initial step that informs the approach to
take (launchpoint), or (3) a common critical error to avoid (caution alert). Note that reasoning abstractions encode a mix of
procedural and factual knowledge that may be helpful.

is, when conditioned on abstractions, an LLM should learn to implement useful algorithmic procedures
via RL that can utilize and compose the procedural information in the context as best as possible and
apply it to the problem at hand. This naturally enhances the diversity of solution strategies and behaviors
that a model learns to utilize when encountering an unseen problem, in contrast to committing to a
narrow set of approaches, as existing models do. In RL terminology, abstractions serve as high-level
subgoals, skills, or priors—which depend on context—guiding the low-level solution-generating policy.

In this work, we imbue LLMs with the capability of proposing and utilizing reasoning abstractions for
reasoning problems. Concretely, we build reasoning models that, first, given an input problem, propose
one or more reasoning abstractions, expressed in natural language. Subsequently, they generate a
solution that utilizes the information and principles prescribed by these abstractions. To achieve this, we
jointly train two LLMs via RL: (1) an abstraction generator, and (2) an abstraction-conditioned solution
generator. The abstraction generator is rewarded for the improvement in the accuracy of the solution
generator, stemming from the abstractions it provides. The solution generator is rewarded to maximize
accuracy in solving a problem while utilizing the abstraction. To obtain a good initialization for the
abstraction generator, we run supervised fine-tuning (SFT) on abstractions gathered by prompting an
offline teacher model (o4-mini). This teacher plays the role of a human data collector and is not accessed
after SFT. For the solution generator, we generate solutions from an LLM, conditioning on the abstraction.
We call this approach RL For Abstraction Discovery (RLAD).

The main contribution of this paper is the notion of reasoning abstractions, how they can be obtained and
amplified via RL training, and an illustration of how they can be used to improve reasoning performance.
Concretely, we propose an approach to imbue LLMs with the capability of proposing abstractions and
evaluate the model on several math reasoning benchmarks: AIME 2025 [23], DeepScaleR Hard [37],
and AMC 2023. We find an average 44% improvement over state-of-the-art long chain-of-thought RL
approaches (i.e., DAPO [51]) on AIME 2025, and show an effective benefit from generating diverse
abstractions over brute-force solution sampling.
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Classify breast masses as 
malignant or benign using BI-
RADS, shape, and margin criteria.

...If BI-RADS ≥ 5, then malignant.

...if BI-RADS = 4 AND shape = 
irregular AND margin = ill-
defined, then malignant...

Breast Cancer Detection

45% 60% 88% 45%

90% 90% 94% 100%

GPT-4o-mini

GPT-4o-mini + Abs

Abstraction

Tweet Hate Speech Detection Corporate Lobbying Relevance Bank Note Authentication

...If the text contains explicit 
derogatory slurs (e.g., b****, 
c***, s****, h**, r********), 
classify as hate speech.

...if the text degrades or 
dehumanizes a protected group 
(nationality, race, religion...

...If the bill addresses regulation, 
labeling, pricing, reimbursement, 
R&D funding, or licensing of the 
company’s core products or 
services, label “Yes.”

...Else if the bill alters taxes, 
credits, bonds, infrastructure...

1. If variance > 4, predict Fake.  

2. Else if variance < –3, predict 
Original.  

3. Else if skewness > 5, predict 
Fake.  

4. Else if entropy > 0 and 
skewness > 1, predict Fake.  

Figure 2: Examples of good reasoning abstractions in non-math domains. Adding the abstraction to the prompt of
GPT-4o-mini consistently improves performance on unseen instances.

2. Related Work
Scaling test-time compute and exploration. Recent work highlights the promise of scaling test-time
compute in different ways. One approach involves parallel sampling: sampling multiple reasoning rollouts
and then selecting a winner via a scoring rule [45, 47, 4, 7, 41, 49, 11, 42]. A complementary line of
work iteratively edits a single trace, attempting to implement a sequential search within a single solution
trace [21, 31, 32, 13]. As such, the sequential approach performs a bit worse on harder problems [42, 33],
where it often gets trapped in strategies that seem optimal but aren’t actually [27]. Yet it still performs
better than parallel search on easier and medium difficulty problems [42]. Our approach of proposing
and leveraging abstractions enables a kind of hybrid between sequential sampling and parallel sampling,
guided by the proposed abstractions. This should address the failure modes of current methods. Prior work
has also utilized hand-designed scaffolds to integrate multi-step evaluations of intermediate hypotheses
into reasoning [50, 12, 11, 15]. In contrast, we do not rely on pre-defined interfaces but learn to
automatically propose useful abstractions.

Using prior knowledge for LLM reasoning. Several threads of work converge on the idea that textual
artifacts, such as examples, plans, or prompts, can serve as reusable knowledge that guides LLM behavior.
Existing retrieval-augmented generation (RAG) pipelines assume a static corpus, typically of human-
written text, and focus on improving retrieval heuristics [14, 3, 44, 46, 2, 17]. Many works use LLMs
to learn or refine prompts, either in an input-agnostic fashion [58, 48, 30, 8] or through input-specific
edits based on feedback [40, 22, 9, 54, 18]. Other related work explores the use of synthetic demon-
strations [56], scratchpads [26], and memory-augmented agents [36] to encode prior problem-solving
knowledge. Two recent works demonstrate that LLMs can accumulate and reuse their own experience
across tasks [57, 43]. While one can view our reasoning abstractions as a form of prior procedural and
factual knowledge produced before the model’s solution attempt, this knowledge is (a) input-dependent
and (c) is not acquired from an external source at deployment, but rather is “proposed” by the model
itself. Imbuing models with this capability requires a two-player cooperative RL training procedure that
we develop. To our knowledge, such procedures have not been used for generating textual artifacts of
any type, let alone the abstractions we consider.

3. Preliminaries and Notation
We study reasoning with LLMs, where the LLM is given a problem x and generates a stream of tokens̃︀y that ends in an estimate of the answer. We assume access to a rule-based ground-truth 0/1 reward
Accx(̃︀y,y⋆) ∈ {0, 1} that measures correctness of the produced answer ̃︀y against the ground-truth solution
y⋆ for the question x. For training, we are given a dataset 𝒟train = {(x𝑖,y

⋆
𝑖 )}𝑁𝑖=1 of problems x𝑖 and

solutions y⋆
𝑖 that end with the correct answer. Our goal is to train the LLM 𝜋(·|x) such that it achieves
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Figure 3: Many factors govern gains from abstractions—abstraction generator, abstraction length, and solver capacity.
Notably, without further training, only the strongest generator yields consistent accuracy boosts. The heatmap shows relative
accuracy change (%) on GSM8k and GSMPlus. Rows denote solver size, columns denote abstraction source. In Section 5, we
will describe our method that can train smaller models to generate high-quality abstractions and use them.

high rewards on a test distribution of problems 𝒫test.

We primarily evaluate models in terms of their average accuracy under 𝒫test. We also measure the pass@k
metric, where for problem x, we sample 𝑘 solutions ̃︀y1, . . . , ̃︀y𝑘 ∼ 𝜋(·|x), and consider the problem to be
solved if any of these 𝑘 traces is correct. This metric couples accuracy with diversity, i.e., it attains the
largest value when the model effectively finds diverse, good responses. To reduce variance in estimating
pass@k, we sample 𝑛 ≥ 𝑘 samples per problem and use the unbiased estimator introduced in OpenAI
Codex [5]: 1−

(︀
𝑛−𝑐
𝑘

)︀
/
(︀
𝑛
𝑘

)︀
, where 𝑐 ≤ 𝑛 is the number of correct samples.

4. Reasoning Abstractions and Why They Are Useful
Solving reasoning problems often requires composing both procedural knowledge (e.g., how to apply a
root-finding algorithm) and factual knowledge (e.g., relevant lemmas or intermediate results). Current
approaches typically train reasoning models to elicit such knowledge entirely through reinforcement
learning (RL) with long chains of thought. However, this is often ineffective as RL often tends to optimize
for “depth”: producing longer traces where each subsequent segment extends the last (e.g., verifying
prior calculations), rather than “breadth”, which involves exploring diverse solution strategies. In this
section, we introduce abstractions, that provide a mechanism for explicitly encoding a range of procedural
and factual concepts useful in solving a problem.

Intuition. We instantiate reasoning abstractions as concise textual descriptions of core insights that
are useful for solving a problem. We show some examples of abstractions in Figure 1, in the domain
of math reasoning. Here, these abstractions can correspond to useful techniques (e.g., “launchpoint”
in Figure 1), a useful lemma or heuristic principle (e.g., “blind-follow” in Figure 1), and cautionary
examples that demonstrate common pitfalls encountered when solving a problem (e.g., “caution alert” in
Figure 1). These abstractions distill complex reasoning patterns and potential approaches into useful
nuggets, allowing models to generalize across structurally similar problems.

Conceptual understanding. With this intuitive notion in place, we now consider a more conceptual
definition. We can view abstractions as a compressed representation of the reasoning procedures
embedded within longer chains of thought. Consider the space of possible reasoning traces for a
given problem, which can be visualized as a graph structure where nodes represent intermediate states
encountered when solving a question (see Figure 1). Good abstractions identify useful substructures
within this larger reasoning graph. For example, an abstraction can capture if a set of strategies lead to a
similar outcome or another set of tactics leads to an error being consistently made.
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Concretely, let us denote the LLM policy that produces a solution conditioned on the problem x as 𝜋sol
𝜃 (·|x).

A good abstraction z is a sequence of tokens that provides some useful procedural and factual information
to improve model performance:

Ẽ︀y∼𝜋sol
𝜃 (·|x,z) [Acc(̃︀y,y*)] > Ẽ︀y∼𝜋sol

𝜃 (·|x) [Acc(̃︀y,y*)] . (1)

How can we generate good reasoning abstractions? Do good reasoning abstractions exist? We now
attempt to understand whether good reasoning abstractions exist and how one might discover them.
Perhaps the most natural way to obtain an initial set of reasoning abstractions is to collect a diverse set
of traces that attempt to solve a problem and then summarize the useful concepts appearing in these
traces, as illustrated in Figure 1. To evaluate the existence and utility of reasoning abstractions (before
developing our method to train LLMs to discover useful reasoning abstractions), we instantiate this
idea by prompting a model to generate solutions for a given problem and prompting a stronger model
to deduce patterns from the responses of the first model. Concretely, we utilize the Qwen3 series of
models to produce solutions and a stronger reasoning model, o4-mini 1, to generate abstractions. While
this approach is not perfect and is not meant to be our final approach, it still enables us to validate the
feasibility of reasoning with abstractions. To ensure that the abstractions do not “leak” content of the
solution, we verify that post-hoc prompting the solver with only the abstraction and no question yields
zero accuracy.

Results and observations. After generating abstractions as above, we measure their quality by evaluating
Equation 1, i.e., by checking if conditioning the problem solver on a set of abstractions improves its
accuracy. Results in Figure 3 show that conditioning a problem solver on generated abstractions improves
accuracy when three conditions hold simultaneously: (i) the abstraction is not too short (e.g., not just
a few words that are not informative) and generated by a strong generator (o4-mini(Long)) and (ii)
the solution generator has sufficient capability (Qwen3-1.7B or Qwen3-4B) of interpreting and utilizing
the generated abstraction. These results confirm that good abstractions (satisfying Eq. 1) exist for math
problems, but neither the ability to generate them nor the ability to leverage them in solutions arises
naturally. In Section 5, we will describe our method for explicitly training models to propose and use
such abstractions effectively.

Good abstractions exist in many domains. We also find that this procedure can be used to identify
an initial set of useful reasoning abstractions on many problem domains, including healthcare, human
behavior, legal reasoning, and web security. Of course, the proportion of abstraction devoted to procedural
knowledge and factual knowledge is different in these domains compared to math reasoning. Nonetheless,
we find that using reasoning abstractions improves performance by 30% on average over 37 tasks from
RAFT [1], CLUES [24], and LegalBench [10]. We show four representative abstractions in Figure 2 and
full results in Table 3 in the appendix.

Takeaways: Reasoning abstractions improve performance
Reasoning abstractions summarize procedural and factual knowledge that is useful for learning
to solve problems via diverse strategies. Prompting abstractions generated by merely prompting
models already improves performance by 30% on average for reasoning.

1o4-mini serves solely as a tool for analysis and offline data collection; no calls are made to it during training or evaluation.
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Figure 4: RLAD training paradigm. We train an abstraction generator, 𝜋abs
𝜃 , that proposes some reasoning abstractions

conditioned on the question x, denoted as z. Then, the solution generator, 𝜋sol
𝜃 , is trained to produce a response, ỹ conditioned

on the generated abstraction z. The reward used for training 𝜋abs
𝜃 corresponds to the average success rate of the solution

generator conditioned on the proposed abstraction.

5. Learning to Discover Reasoning Abstractions
Having defined the notion of reasoning abstractions and demonstrated that they can improve performance
when applied to tackling reasoning problems, we now aim to develop an approach that enables us to
improve an LLM’s ability to propose and utilize abstractions. Doing so requires training an abstraction
generator: an LLM, z ∼ 𝜋abs

𝜃 (·|x) that proposes candidate abstractions z given problem x, and an
abstraction-conditioned solution generator, y ∼ 𝜋sol

𝜃 (·|x, z), that produces a solution y given x and
abstraction z. Note that z is parameterized as a variable-length string of tokens and might consist of one
or more pieces of information or procedures. While our approach applies to the case where 𝜋abs

𝜃 produces
more than one abstraction, we abuse notation and subsume multiple abstractions into a single one to
avoid notational clutter. In this section, we describe RL For Abstraction Discovery (RLAD), our method
for training these models via RL.

5.1. Training 𝜋abs
𝜃 and 𝜋sol

𝜃 via RL
The core principle behind our approach is that an abstraction z is successful at a given problem x if it
can maximally help 𝜋sol

𝜃 (·|x, z) find correct responses to question x, without actually leaking the answer
itself. To convert this into an RL objective, we design a reward function that rewards an abstraction z
with the expected success of solutions generated by 𝜋sol

𝜃 conditioned on z:

𝑟𝜋sol
𝜃
(x, z) := Ẽ︀y∼𝜋sol

𝜃 (·|x,z) [Accx(̃︀y,y*)] , (2)

where y* is the ground-truth answer and Accx(·, ·) denotes the 0/1 accuracy on problem x. To train
𝜋sol
𝜃 , one can then adopt the fairly straightforward approach of maximizing 0/1 binary outcome reward,
now conditioned on a given abstraction z sampled previously from 𝜋abs

𝜃 , akin to recent results RL [6].
Formally, we set the reward for a solution as: 𝑟(x, z, ̃︀y) := Accx(̃︀y,y*). With these reward functions in
place, perhaps the most natural approach then would be to train 𝜋abs

𝜃 to maximize 𝑟𝜋sol
𝜃
for a fixed 𝜋sol

𝜃

on a dataset of prompts 𝒟𝜋abs
𝜃
, while also iteratively training 𝜋sol

𝜃 to maximize the reward function 𝑟 on
modified prompts generated by concatenating a set of sampled abstraction z on a dataset of problems,
𝒟𝜋sol

𝜃
. This maximization could be done via on-policy RL methods like GRPO [38] or (batched) offline

RL methods like DPO [35] and STaR [55].

Challenges with naïve reward design. While the approach so far is extremely simple, it presents some
challenges. In particular, the reward functions defined above can result in spurious, undesirable solutions
in a rather nuanced manner: (1) if 𝜋abs

𝜃 learns to solve problem x in its entirety, it will still be rewarded
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highly by 𝑟𝜋sol
𝜃
but is not a desirable abstraction; (2) if 𝜋sol

𝜃 is too weak or too strong, such that it is either
always able to solve the problem x or never solves it, then 𝑟𝜋sol

𝜃
will not provide a meaningful signal

to update 𝜋abs
𝜃 ; and (3) similar to the above failure modes, training 𝜋sol

𝜃 via on-policy RL may result in
it ignoring the abstraction z altogether no matter how useful it is. Abstractly, all of these challenges
correspond to a “signal obfuscation” problem, where an imbalance in the strength of 𝜋abs

𝜃 and 𝜋sol
𝜃 may

drown out the learning signal for the other.

Modifying reward design. To address these signal obfuscation challenges, we make a slight but
consequential change to the training process. In particular, we train 𝜋sol

𝜃 on a mixture of prompts x
augmented by abstractions z and prompts x without any abstractions at all. In this process, while we
utilize Accx as discussed above on a given response, we simply zero out rewards for any trace generated
on x without abstractions. When utilizing KL-constrained RL, e.g., GRPO [38], 𝜋sol

𝜃 is now trained to
closely mimic the distribution of responses as the reference LLM on questions x but must attempt to find
ways to optimize reward on the same question x when augmented with an abstraction. This can be
accomplished only when 𝜋sol

𝜃 learns to utilize the provided abstraction carefully, hence addressing one
of the challenges above. Second, we ensure that z ∼ 𝜋abs

𝜃 (·|x) itself does not contain the answer to the
question x, which means that Acc(z,y*) is penalized to be small. Finally, we utilize separate partitions
of the training dataset to train 𝜋abs

𝜃 and 𝜋sol
𝜃 , thereby avoiding overfitting on subsets of the data. We

present detailed ablations of these design choices in Appendix B.3. Formally, the updated versions of
these reward functions are shown as:

𝑟(x, z, ̃︀y) := {︃
0, if z = ∅
Accx(̃︀y,y*), otherwise

(3)

𝑟𝜋sol
𝜃
(x, z) := Ẽ︀y∼𝜋sol

𝜃 (·|x,z)[Accx(̃︀y,y*)]. (4)

5.2. Warmstarting 𝜋sol
𝜃 and 𝜋abs

𝜃 from Good Initializations
While the above approach prescribes a recipe for RL training of 𝜋abs

𝜃 and 𝜋sol
𝜃 , any such recipe critically

relies on the ability of the initialization to generate somewhat meaningful abstractions and solutions
conditioned on the abstraction input, respectively, from the beginning of RL training. How can we ensure
that our model initializations have this capability? Inspired from the approach of running an initial
phase of SFT to imbue into the model the basic structure of a long chain-of-thought before running
RL [6, 33], we run an initial phase of SFT to imbue into 𝜋abs

𝜃 and 𝜋sol
𝜃 the basic capabilities of producing

abstractions and attempting to follow abstractions respectively, even if the resulting models are not very
good. For this initial warm-start phase, we follow the protocol outlined in Section 4 and construct a
corpus {(x𝑖, z𝑖,y𝑖)}𝑀𝑖=1 by prompting a teacher model once, exactly as one would collect human-written
hints. For each training problem-solution pair (x,y*), in our training set, we first generate an abstraction
z using an instruction-tuned model, discarding any that leak y*. We then sample a solution trace y
conditioned on (x, z). As mentioned in Section 5.1, we partition this corpus into non-overlapping splits
for 𝜋sol

𝜃 and 𝜋abs
𝜃 to avoid overfitting.

5.3. Practical Approach and Algorithm Details
For warmstarting the abstraction generator, we utilize abstractions collected once from an offline teacher
(o4-mini). We then use a weaker solution generator (GPT-4.1-mini) to evaluate the efficacy of each
abstraction by comparing the success rate of the solution generator with and without the abstraction. We
filter abstractions that don’t increase solution generation performance to form our seed set of abstractions.
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Let A be the set of positive integer divisors of 2025. Let B be a 
randomly selected subset of A. The probability that B is a 
nonempty set with the property that the least common multiple 
of its element is 2025 is m/n, where m and n are relatively 
prime positive integers. Find m+n.

Question Solution
...

But how do we compute the number of subsets with LCM equal to 2025?



From the cheatsheet, there's a mention of using prime factorization and 
considering exponent vectors. Let me recall that.



The idea is that each divisor of 2025 can be represented as 3^a * 5^b, where 0 
≤ a ≤ 4 and 0 ≤ b ≤ 2. So each element of A is determined by exponents (a, b). 
The LCM of a subset of these elements is 2025, which is 3^4 * 5^2. Therefore, 
for the LCM of the subset to be exactly 2025, each prime in the subset must 
have at least the exponent of 2025 for that prime.



So for prime 3, in the subset, there must be at least one element with exponent 
4 (since 2025 has exponent 4 for 3). Similarly, for prime 5, there must be at 
least one element with exponent 2 (since 2025 has exponent 2 for 5).



Therefore, the problem reduces to counting the number of subsets of A 
(including empty set) where:

... 
<description>Model subsets of divisors by their exponent 
vectors. Let S be the set of exponent choices for all primes. A 
subset of divisors corresponds to a subset of S. The condition 
“LCM equals N” becomes “for each prime i, the maximum 
exponent chosen in the subset equals eᵢ.”</description> 
<example>With primes (2,5) and exponent choices S={(0,0),
(1,1),(2,2),(3,3)}, the condition “LCM=2^3·5^2” means we must 
include at least one choice with exponent 3 for 2 and exponent 
2 for 5. Any valid subset has at least one of (3,0),(0,2),(3,2).</
example>

Reasoning Abstraction

Figure 5: Example of a reasoning abstraction. Here, we provide an example of a reasoning abstraction for a given problem.
In the solution, we see (in blue) references to the abstraction and keywords from the abstraction being utilized in the thinking
trace of the reasoning model.

Then, we run SFT for 5 epochs on the seed dataset to obtain an initial abstraction generator. For solution
generation, we utilize Qwen-3-1.7B [34], a 1.7B reasoning model distilled from Qwen-3-32B.

After SFT, we employ RLAD to further fine-tune the abstraction generator and abstraction-conditioned
solution generator via RL. For the abstraction generator, we opt to use “batched” offline RL instantiation of
our approach via RFT [52] and RPO [28], since reward computation by rolling out the solution generator
on the fly was infeasible in our RL infrastructure and compute. To train the solution generator, we utilize
the DAPO approach [51] and include token-level policy loss normalization, asymmetric clipping, and a
curriculum for prompt difficulty and length. Building upon implementation of concurrent work [37],
we employ a two stage curriculum where we partition the DeepScaleR [19] mixture by success rate of
the base model into three sets: (1) easy, (2) medium, and (3) hard, where we fine-tune first on easy
problems with an 8K token budget and then on medium problems. We utilize the hard split as a held-out
evaluation subset, which we denote as DeepScaleR [Hard]. We outline hyperparameters and details in
Appendix A.1 and provide a pseudocode in Algorithm 1.

Takeaways: RLAD method design

RLAD jointly optimizes an abstraction generator 𝜋abs
𝜃 and solution generator 𝜋sol

𝜃 with RL. We
initialize 𝜋abs

𝜃 by distilling traces from an offline teacher model (o4-mini). We optimize the
two models in an alternating manner, using reward functions that incentivize 𝜋sol

𝜃 to utilize
abstractions and discourage 𝜋abs

𝜃 from “leaking” the response to the input problem (Eq. 3)

6. Experimental Evaluation
The goal of our experiments is to evaluate the efficacy of RLAD in improving the reasoning capabilities
of LLMs through abstraction-guided solution generation. Specifically, we aim to answer the following
research questions: (1) Does RLAD improve pass@1 accuracy across several mathematical reasoning
benchmarks compared to direct solution generation? (2) How does RLAD scale as more abstractions
and solutions are generated? (3) What makes the generated abstractions useful, how faithfully are they
followed, and how do they guide and improve solution generation? To this end, we compare RLAD with
strong base models on three representative mathematical reasoning datasets: AMC 2023, AIME 2025,
and DeepScaleR Hard [19], which itself is a subset of hard problems from the OmniMATH mixture on
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which DeepSeek-R1 distilled Qwen-32B model attains an accuracy of ≤ 10%. We also conduct several
ablations to better understand the abstractions produced by RLAD.

6.1. Main Performance Results for RLAD
We evaluate RLAD in three settings: (1) w/o abs,without abstractions; (2) w/ abs (avg), average
performance over generations conditioned on 4 proposed abstractions per problem; and (3) w/ abs
(best): using the best-performing abstraction (in a set of 4 proposed abstractions per problem).

Observe that RLAD consistently outperforms the base model and variant fine-tuned with RL on the same
prompts via DAPO [51], but without any abstractions, across all settings and benchmarks (Table 1). This
highlights that RLAD can propose and leverage abstractions to improve its reasoning performance. We
also note that these performance gains are not limited to abstraction-conditioned inference: even in
the w/o abs setting, where no abstraction is provided during inference, RLAD improves over the prior
methods, when trained with abstractions via RLAD. This suggests that exposure to diverse abstractions
during training enhances the model’s general reasoning ability. We observe similar trends on additional
benchmarks, including AIME 2024 and HMMT 2025 (see Appendix B.2), where RLAD improves in the
w/o abs setting.

Approach AIME 2025 DeepScaleR [Hard] AMC 2023
No Abs Abs (Mean) Abs (Best) No Abs Abs (Mean) Abs (Best) No Abs Abs (Mean) Abs (Best)

Qwen-3-1.7B 33.75 36.25 40.00 20.21 22.14 32.50 86.41 78.01 84.53
+ DAPO 37.92 34.90 39.79 21.67 21.88 33.54 86.41 81.99 88.44
+ RLAD 38.04 42.45 48.33 23.54 24.84 35.54 87.25 88.35 91.72

Table 1: Pass@1 accuracy across three math reasoning benchmarks. RLAD achieves consistent gains in both abstraction-
conditioned and w/o abstraction settings.

In Appendix C, we also measure the performance of RLAD when different budgets are allowed for
reasoning – while Table 1 measures performance at a budget of 32K tokens, we also measure performance
at 8K and 16K budgets and find RLAD to be more effective compared to the comparisons.

6.2. Understanding Properties of RLAD
Compute tradeoffs between abstraction and solution generation. We now study how to allocate
compute between generating diverse abstractions and sampling solutions conditioned on them to attain
maximal performance within a given budget on the total sampling allowed. This corresponds to a
“compute-optimal strategy” [42] for partitioning compute between abstraction and solution generation.
If the model typically fails by making small local errors in its computations, then additional concise
abstractions may not help it as much as simply trying again. In contrast, if the model tends to pursue
a seemingly plausible but incorrect approach and is unable to recover or switch to a better one, then
conditioning on diverse abstractions can help by offering alternative high-level approaches toward the
correct answer. In other words, when the model tends to explore “depth” over “breadth” of solution
strategies, abstractions can help improve performance. With this intuition, we hypothesize that when the
compute budget permits only a limited number of samples, allocating more compute to sampling multiple
solutions will enable the model to succeed at least once. In other words, sampling multiple solutions for
the same abstraction will result in a higher pass@k performance. However, once pass@k for a single
abstraction begins to saturate, performance gains are more likely to come from scaling the diversity of
abstractions, which enables the model to explore qualitatively different regions of the solution space.
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Figure 6: Tradeoff of abstraction and solution generation on AIME 2025. As the compute budget increases, we find better
performance efficiency when allocating our budget to abstraction generation rather than solution generation, for all values of
normalization offset 𝑘0.

Abstraction No
Abstraction

Sol
Retrieval

Unrelated
Abstraction

0

10

20

30

40

50

Ad
he

re
nc

e 
Ra

te
 (%

) 43.33%
38.75%

20.42%
16.25%

Abstraction-Solution Adherence Rates

Figure 7: Abstraction-conditioned solution generation analysis. RLAD produces solutions with (left) greater semantic
diversity across different abstractions and (right) higher abstraction adherence than baselines.

To visualize this tradeoff, we plot iso-compute scaling curves under a fixed compute budget, where
multiple abstractions are generated and multiple solutions are sampled per abstraction. Specifically, we
denote the number of abstractions as 𝑚 and the number of solutions sampled per abstraction as 𝑘. To
better isolate the effect of abstraction diversity, we introduce a normalization offset 𝑘0, which accounts for
performance gains that do not stem from new strategies, but arise from local modifications in the solution
and the model’s stochasticity (e.g., small edits that do not require new abstractions). Figure 6 shows
multiple iso-compute frontiers, one for each total compute budget. Each curve corresponds to a fixed total
number of abstraction-conditioned samples, with compute defined as𝑚×(𝑘−𝑘0), where𝑚 is the number
of abstractions, 𝑘 is the number of solutions per abstraction, and 𝑘0 offsets for solutions. This formulation
captures the number of “meaningful” samples that go beyond the model’s local neighborhood. The x-axis
plots the ratio between abstractions and adjusted solutions, 𝑚/(𝑘 − 𝑘0) We observe in Figure 6 that
across 𝑘0 ∈ {0, 2, 4, 6, 8}, shifting compute toward abstractions consistently yields greater performance
improvements than allocating the same additional compute to solution refinements. This supports the
conclusion that once local errors in the chain-of-thought have been addressed, it is more effective to increase
the breadth of the search through abstraction conditioning rather than to continuing to scale up sampling
alone.

Understanding behavior of the abstraction-conditioned solution generator. A desirable property
of the solution generator is the ability to follow proposed abstractions. To study this, we prompt a
strong reasoning model o4-mini to classify whether a particular solution trace produced by a trained
solution generator closely adheres to a given abstraction. We ask for a binary decision on each pair
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of hint and solution, and measure the adherence rate across 200 pairs. In Figure 7 (right), we report
adherence rates under four conditions: Abstraction (solution generated with the intended abstraction),
No Abstraction (solution with only question), Retrieval (a semantically similar past solution is retrieved),
and Unrelated Abstraction (solution conditioned on an abstraction from a different problem). We find
that the Abstraction condition achieves the highest adherence rate, outperforming all control variants on
average. Intuitively, this means that the trained solution generator is more likely to follow the strategy or
guidance of a given abstraction. Additionally, we measure the semantic similarity of solutions generated
without abstraction conditioning, conditioned on the same abstraction, and across abstractions. Here,
across abstractions, the semantic similarity of solutions is lower, indicating that abstractions allow for
higher solution diversity.

Figure 8: Abstraction Categorization RLAD produces a di-
verse characterization of abstractions, which we characterize by
prompting o4-mini.

Categorizing abstractions. As outlined in Ap-
pendix C, we classify each model-generated ab-
straction into four mutually-exclusive categories:
(1) Caution Alert that warns the solver to avoid
a specific approach; (2) Productive Launchpoint
that suggests strategic framings or problem refor-
mulations that open high-potential solution paths;
(3) Blind-Follow Trajectory that prescribes
repeatable, step-by-step procedures executable
without further insight; and (4) Structural
Shortcut that leverages abstract insights or in-
variants to collapse multiple reasoning steps into
a single leap. In Figure 8, we show that after
training via RLAD, the distribution over these cat-
egories shifts, with a notable increase in blind-
follow abstractions, which a stronger reasoning
model classifies as an effective reasoning path to
a successful solution as seen in Appendix C.

Takeaways: Experimental Results
RLAD outperforms RL fine-tuning approaches that do not propose or leverage abstractions
on math reasoning. Jointly scaling the number of abstractions and solution samples enables
continued performance gains even when scaling solutions alone begins to saturate.

7. Discussion, Conclusion, Limitations, and Societal Impacts
We introduce reasoning abstractions: concise representations of procedural and factual knowledge
expressed in natural language, as ameans to broaden the reasoning strategies of LLMs. Ourmethod, RLAD,
instantiates a two-player training framework that trains an abstraction generator and an abstraction-
conditioned solution generator. RLAD yields consistent improvements across several mathematical
reasoning benchmarks, outperforming existing methods for training LLMs to reason. Moreover, we
demonstrate that allocating compute toward generating diverse abstractions, rather than increasing
solution sampling alone, yields greater performance gains. This highlights abstractions as a complementary
axis for scaling test-time compute. While longer chain-of-thoughts and parallel solution sampling provide
existing ways to scale compute, using abstractions provides an orthogonal axis to improve performance.
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While we demonstrated that abstractions can be helpful, our evaluation is limited to mathematical
reasoning tasks, leaving open-ended reasoning unexplored. Finally, RLAD incurs additional computational
overhead, and training a single model that can both generate abstractions and solutions is open for future
work.

From a societal perspective, this work has the potential to enable more reliable and interpretable reasoning
in high-stakes applications such as education, scientific discovery, and decision support. However, stronger
reasoning abilities could also be misused to generate more persuasive misinformation or automate
complex manipulation.
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Appendices

A. Experimental Details
A.1. Pseudocode for RLAD

Algorithm 1 Joint RL Training of 𝜋abs
𝜃 and 𝜋sol

𝜃

Require: Policies 𝜋abs
𝜃 (z | x), 𝜋sol

𝜃 (ỹ | x, z) Datasets 𝒟𝜋abs
𝜃

, 𝒟𝜋sol
𝜃

Require: Learning rates 𝛼𝜋abs
𝜃

, 𝛼𝜋sol
𝜃
; Batch sizes 𝑁,𝑀 ; Epochs 𝐸

1: Initialize 𝜋abs
𝜃 , 𝜋sol

𝜃

2: for 𝑒 = 1 to 𝐸 do ◁ Update abstraction policy
3: for {x𝑖}𝑁𝑖=1∼𝒟𝜋abs

𝜃
do

4: z𝑖 ∼ 𝜋abs
𝜃 (·|x𝑖)

5: 𝑟𝑖 ← 𝑟𝜋sol
𝜃
(x𝑖, z𝑖)

6: 𝜋abs
𝜃 ← 𝜋abs

𝜃 − 𝛼𝜋abs
𝜃
∇𝜋abs

𝜃
ℒSTAR/RPO(𝜋

abs
𝜃 ;x𝑖, z𝑖, 𝑟𝑖)

7: end for ◁ Update solution policy
8: for {x𝑗}𝑀𝑗=1∼𝒟𝜋sol

𝜃
do

9: z𝑗 ∼ 𝜋abs
𝜃 (·|x𝑗), ỹ𝑗 ∼ 𝜋sol

𝜃 (·|x𝑗 , z𝑗)
10: 𝑟𝑗 ← 𝑟(x𝑗 , z𝑗 , ỹ𝑗)
11: 𝜋sol

𝜃 ← 𝜋sol
𝜃 − 𝛼𝜋sol

𝜃
∇𝜋sol

𝜃
ℒGRPO(𝜋

sol
𝜃 ;x𝑗 , z𝑗 , ỹ𝑗 , 𝑟𝑗)

12: end for
13: end for

A.2. Hyperparameters

B. Additional Experimental Results

B.1. Abstraction on Diverse Text Classification
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Hyperparameter Value

algorithm DaPO [51]
training steps 100
epochs 10
train batch size 128
max prompt length 3072
max response length 16384
max extrapolation length 32768
learning rate 1e-6
PPO mini batch size 64
PPO micro batch size 64
clip ratio (low / high) 0.2 / 0.5
entropy coefficient 0.001
KL loss coefficient 0.001
KL loss type low_var_kl
sampling temperature (train / val) 0.6 / 0.6
samples per prompt (train / val) 16 / 8
max batched tokens 32768

Table 2: Key training hyperparameters used in RLAD.

B.2. RLAD’s w/ abs performance on AIME 2024 and HMMT 2025

In this section, we evaluate the performance of the base model (Qwen-3-1.7B), GRPO-enhanced model,
and our proposed method RLAD on two math reasoning benchmarks: AIME 2024 and HMMT 2025. As
shown in Table 4, our method achieves the best performance across both datasets.

It is important to note that RLAD is trained using access to abstractions, yet it also generalizes better
even when evaluated without abstraction. This suggests that RLAD does not merely overfit to the
abstraction format but instead learns to effectively leverage high-level procedural guidance, leading to
better generalization on challenging reasoning benchmarks.

B.3. Design Choice Ablations

In this section, we run run some ablation experiments to better understand the contributions of individual
components of RLAD in attaining good performance. In particular, we are interested in understanding
the role of (a) inclusion of prompts that are not annotated with an abstraction, (b) reward masking on
these prompts if they are included, and (c) training via a curriculum approach, following the protocol in
Setlur et al. [37].

We present our results in Table 5. The first experiment we run focuses on understanding how important
it is to include a small fraction of prompts with no abstractions in training of 𝜋sol

𝜃 . Observe in

Curriculum training refers to a staged training process where the model first learns from simpler problems
and gradually transitions to harder examples. We borrow this idea from concurrent work Setlur et al.
[37] (which we also attach in the supplementary material) as it showed that this approach led to better
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Dataset Zero-shot Best Average
Abstraction Abstraction

UCI Dry Bean 0.00 0.65 0.51
Wikipedia Proteinogenic Acid 0.22 0.78 0.58
UCI Student Performance 0.25 0.45 0.28
UCI Website Phishing 0.25 0.25 0.22
UCI Teaching Assistant Evaluation 0.25 0.45 0.33
UCI Contraceptive Method Choice 0.30 0.60 0.43
UCI Vertebral Column 0.30 0.75 0.64
UCI Shill Bidding 0.30 1.00 0.95
Kaggle Job Change 0.30 0.85 0.83
UCI Caesarian Section 0.38 0.75 0.64
Wikipedia Coin Face Value 0.40 1.00 0.88
UCI Wine 0.40 0.95 0.85
UCI Tic-Tac-Toe Endgame 0.40 0.80 0.42
Kaggle Campus Placement 0.40 0.85 0.72
Wikipedia Driving Championship Points 0.40 1.00 0.74
UCI Mammographic Mass 0.45 0.90 0.82
UCI Banknote Authentication 0.45 1.00 0.78
Kaggle Engineering Placement 0.50 0.85 0.79
RAFT One Stop English 0.50 0.40 0.36
LegalBench Function of Decision Section 0.54 0.72 0.61
Kaggle Entrepreneur Competency 0.55 0.65 0.58
UCI Indian Liver Patient 0.55 0.80 0.68
LegalBench International Citizenship Questions 0.56 0.74 0.63
LegalBench Abercrombie 0.56 0.80 0.67
Wikipedia Color Luminance 0.60 1.00 1.00
RAFT Twitter Hate Speech 0.60 0.90 0.76
Wikipedia Award Nomination Result 0.64 1.00 0.76
UCI Car Evaluation 0.65 0.75 0.64
Kaggle Water Potability 0.65 0.50 0.38
Kaggle Travel Insurance 0.65 0.70 0.59
UCI Internet Firewall 0.70 1.00 0.97
RAFT ADE Corpus 0.70 1.00 0.89
UCI Somerville Happiness Survey 0.70 0.80 0.68
UCI Mushroom 0.75 1.00 0.95
UCI Occupancy Detection 0.80 1.00 0.92
Kaggle Stroke Prediction 0.85 0.90 0.90
LegalBench Corporate Lobbying 0.88 0.94 0.88

Average 0.50 0.80 0.68

Table 3: Evaluation of abstractions on diverse collection of 37 domains. We sampled 10 abstractions by
prompting o4-mini, and measure test set accuracy while prompting GPT-4o-mini with each abstraction.
We report both the average performance of the 10 abstractions and the best abstraction. We find that the
average and best abstractions outperform standard prompting by 18.0% and 30.0% on average,
respectively.
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Approach AIME 2024 HMMT 2025

Qwen-3-1.7B 48.54 22.50
+ GRPO 44.17 23.13
+ RLAD 51.46 23.75

Table 4: RLAD’s w/ abs performance on AIME 2024 and HMMT 2025.

performance without any abstractions, for just direct math problem-solving. In contrast, non-curriculum
training mixes problems of all difficulties throughout training. As shown in the table, when training with
abstractions as well, curriculum training improves both average and best-case abstraction-conditioned
performance (0.41 and 0.48 vs. 0.38 and 0.43).

Second, we explore whether including no-abstraction prompts during training helps the solution-
generator pay attention to the abstractions. We find that including these abstractions minorly improves
the average performance from 0.37 to 0.38, in isolation when curriculum is not utilized.

Lastly, we study the effect of masking the problem-solving reward on no-abstraction prompts. We apply
reward masking to prevent updates that might cause the solution-generator to ignore abstractions
altogether. Specifically, we zero out the advantage (i.e., no policy reward) for completions from no-
abstraction prompts, while retaining the KL penalty to maintain regularization. This design discourages
the model from over-optimizing on no-abstraction examples, which could otherwise lead it to bypass
abstractions entirely, a shortcut that may yield improved performance on the training set but hinders
generalization to test problems when abstractions are provided. Empirically, we find reward masking is
helpful.

Approach Design Choice AIME 2025
curriculum training including no-abstraction prompt reward masking w/ abs (avg) w/ abs (best)

variant 1 ✗ ✓ ✗ 36.51 42.29
variant 2 ✗ ✗ - 37.08 42.50
variant 3 ✗ ✓ ✓ 37.50 43.33
RLAD ✓ ✓ ✓ 42.45 48.33

Table 5: Ablation of Design Choices in RLAD.We isolate the effects of curriculum training, no-abstraction inclusion, and
reward masking. The full method achieves the strongest performance under abstraction-conditioned evaluation.

22



Learning to Discover Abstractions for LLM Reasoning

C. Qualitative Examples of Math Reasoning Abstractions

C.1. Prompt for Abstraction Classification

We prompt GPT-4o-mini with the following classifier prompt to classify each abstraction into one of four
categories.

Post-hoc abstraction classifier prompt

You are a abstraction classifier. You will be given a problem-solving heuristic or abstraction
used for mathematical reasoning. Your task is to classify it into exactly one of the following
mutually exclusive categories, based on the primary cognitive function the heuristic serves.

(A) Caution alert: any abstraction that warns the reader to double-check a specific aspect
of their solution or to not take a specific approach to the problem.
(B) Productive launchpoint: an early move or framing that opens up high-potential trajectories.
Examples include clever reformulations or symmetries.
(C) Blind-follow trajectory: a description of a repeatable, sequential path that can be
reliably followed to solve the problem. Examples include plug-and-play formulas that can be
followed blindly, without insight. Do not choose this is further reasoning is required to
solve the problem.
(D) Structural shortcut: a conceptual move that collapses multiple graph paths into a single
jump via insight or abstraction. This can include introducing invariants.
(E) Other: a abstraction that does not fit into the above categories.
Give a 1-2 sentence explanation for your classification, and end your answer with exactly one
of: (A), (B), (C), (D), or (E).

—
abstraction:
{abstraction}

C.2. Example for Each Abstraction Category

Below, we show examples of abstractions classified into the four categories above.

Examples of (A) Caution alert

<description>Always record forbidden values from denominators before and after manipulation.
After solving the polynomial, discard any roots that make a denominator zero or that do not
satisfy the original equation, to avoid extraneous solutions.</description>
<example>In the equation (x+2)/(2x–1) = x–3, 2x–1 cannot be zero (so x is not ½). If solving
yields x=½ or any root that makes any denominator zero, reject it. Then verify the accepted
roots in the original equation.</example>

<description>Keep units consistent when moving between area and length or summing lengths.
After extracting a length from an area (via square root), ensure subsequent arithmetic stays
in the same unit to avoid scaling errors. </description>
<example>If a square’s area is 10000 cm², its side is sqrt(10000) = 100 cm. To express in
meters, convert 100 cm to 1 m. All later distances computed with that side length must be in
meters to remain consistent.</example>
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Examples of (B) Productive launchpoint

<description>Translate comparative statements into algebraic equations using the chosen
variables. Phrases like “twice as many” or “one less than” correspond to multiplication
or addition/subtraction expressions. This step captures the core relationship in a solvable
form.</description>
<example>If the problem states “Group A has twice as many as Group B,” write the equation x
= 2y. For “Group B has three fewer than Group C,” you would write y = z - 3.</example>

<description>Select one variable as a parameter (often setting it to 1 or keeping it symbolic)
to express all other variables in terms of it. This reduces the number of independent symbols
and streamlines substitutions.</description>
<example>Given p/q = 3 and r/q = 2, choose q as the base variable. Write p = 3q and r = 2q,
so all expressions involving p and r can be handled through q alone.</example>

Examples of (C) Blind-follow trajectory

<description>Logarithms offer a streamlined way to compute floor-based digit counts: for y>0,
the number of integer digits is floor(log10 y) + 1. Use this to handle arbitrary exponents
without juggling large powers explicitly.</description>
<example>To count digits of y = 𝑥7, compute d = floor(7 * log10 x) + 1. If x=2.5, then d =
floor(7 * log10(2.5))+1 = 2+1 = 3 digits.</example>

<description>The mean of a set equals its total sum divided by its number of elements. Use
this to move between sums and averages when counts or totals are known. It works because
“average” is defined as that ratio.</description>
<example>Suppose a subset has k items with mean m. Then its total sum is S = k·m. Conversely,
if you know the sum S and the count k, the mean is m = S/k. For instance, if 5 items average
to 10, their total is 5×10 = 50, and if you later learn the total is 60 for 6 items, the new
mean becomes 60/6 = 10.</example>

Examples of (D) Structural shortcut

<description>When the same distance appears in multiple geometric roles (e.g., as radius to
a vertex and to a tangen t point), express it in different algebraic forms and equate them.
Solving the resulting equation produces the unknown variable, which then gives the desired
length.</description>
<example>If r is both the distance from O to a vertex (r = sqrt[x² + (L/2)²]) and the distance
from O to the tangent point (r = f(x)), set sqrt[x² + (L/2)²] = f(x). Solving this equation
for x and back-substituting determines r explicitly, closing the geometric problem with an
algebraic solution.</example>

<description>Use the perimeter constraint a+b+c=P to eliminate one variable, e.g. set
c=P-a-b, reducing the problem to two degrees of freedom. This simplification turns the
three-variable Heron expression into a function of a and b alone, facilitating analysis or
enumeration.</description>
<example>For a target perimeter P=10, one writes c=10-a-b. Substituting into Heron’s formula
yields A(a,b)=sqrt[5 * (5-a) * (5-b) * (a+b-5)], which is now a two-variable function to study
instead of three.</example>
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